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Equilibrium and compatibility equations are used to obtain differential equations 
connecting algebraically independent components of the binary tensor correlation 

functions of a statistically homogeneous and isotropic elastic field. The cases of 

a birotational field for the stress tensor and of a potential field for the deforma- 

tion tensor are investigated. Also obtained are the corresponding relations for the 
correlation tensors connecting the fields of curvature and the angle of rotation 
vectors. In the latter case the resulting equation is formally identical with the 

K&m&r relation in the statistical hydrodynamics. 

1. The stress and strain correlation functions are tensors of the fourth rank. Unlike 
the fourth rank tensor of the elastic moduli which has two independent components in 

the isotropic medium, the fourth rank correlation tensor is determined by five algebraic 

functions. The necessity of introducing five different functions follows from the axial 
symmetry of the problem, as an isolated axis appears in an isotropic medium, passing 

through the points between which the correlations are established. 
We shall consider a statistically homogeneous medium. The binary correlation func- 

tions of the stress oil’ and strain eij tensor of such a medium are given by 

Sijkl (r) 3 (Sij' (r + p1) sil (rl), 7 Eijh_l (r) = (&ij'(r + rd Eil (0) (l-1) 

Sijo (r) 3 5ij (r) - :Sij (r):, Eij’(l’) S &ij (r) - (Eij (r)\ (1.2) 

Here the angular brackets ( > denote the statistical mean,and the superscript ( ’ ) 

denotes the random components of the corresponding quantities. 

For a statistically isotropic medium the stress and strain correlation tensors can be 
written in the form [l] 

where the twice occurring indices denote summation and the coordinates of the points 
between which the correlation is established, are 0 and 2;. 

The expressions (1.3) and (1.4) show that when r + 0 and a = $45 , the functions 
s, (r) and E, (r) vanish. At the other extreme, when the distances become large, all 

components of the stress and strain correlation tensors decrease asymptotically provided 

that no long-range order exists in the distribution of inhomogeneities. 
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a. The relations connecting the components of the correlation tensor show a signifi- 
cant dependence on the type of the field under investigation, whether it is potential or 

birotational. Kroner @] has shown that any second rank tensor field T can be decom- 
posed into a potential field T, and a birotational field T, 

T = T, + T,, Rot T, = 0, divT, = 0 (2.1) 

the potential field described by the vector potential and the birotational field - by the 

tensor potential T, = def(p, 
T, = Rot Cg, divQ, = 0 (2.2) 

defy (Pk z q(k, i), Rot,jkl f %nk%lVnVm (2.3) 

Here the index following the coma denotes differentiation with respect to the correspond- 
ing coordinate, the brackets denote symmetrization with respect to the indices contained 

therein and ei,,k denotes the antisymmetric unit tensor. 

Taking into account the relations 

elk = U(k, i)v 6ij, j = 0 (2.4) 

the first of which represents the condition that the deformations are small and the second 

is the equation of equilibrium with the volume forces absent; we find that the strain 
field is potential and that the displacement vector u can be regarded as the potential 
of this field. Conversely, the stress field is birotational in the absence of the volume 

forces. 
It is for this reason that, although the tensor representations of the stress and strain 

correlation fields are identical, differences in the form of the sought relationships con- 

necting the components of the corresponding tensors are to be expected. 

3. We first find the relations connecting the components of the stress correlation 

tensor. We assume that the stress field has no potential components and is purely biro- 
tational. Then, assuming for definiteness that n, = ns = c) and ns = n and passing 

from the tensor to the matrix indices, we find, using the first equation of (1.3), that 

S~~CZ = SlzJ$kl $ SoeJ$cL + (S,s - Slz) J&cl + 
+ (SM - SW) J&I + (Su + Ss3 - 2S13 - 4844) J&t (3.1) 

Only five of the six components of the stress correlation tensor appearing in the right- 
hand side of (3.1) are algebraically independent, as the axial symmetry implies the 
relation 

&s = l/a (S,, - S12) (3.2) 

Using (1.1) and (2.4) we find that for a birotational field the condition 

S ijklyj = 0 

must hold. Inserting (3.1) into (3.3) we obtain 

Aini6k1 + Aa (nl6ih. + nk6il) f Asnii:h = 0 

A I= S131 + $ (S,, + &a - S,, - SW) > 

A a = &a1 + + (3S,, + Sl, - S12 - 3Sw3) 

A 3s Ss3’ - S13’ - 2Sd4’ + $ (2&l + Sss - 3&s - 6S,4) 

(3.3) 

(3.4) 

(3.5) 
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Here the prime denotes the derivative with respect to the scalar argument. Assigning 
various values to the tensor indices in (3.4), we find that every A I must be equal to 

zero. This yields three differential equations connecting five algebraically independent 
components of the matrix S,, 

rS13’ + 2 (S,, + s44 - SlO - Ssa) = 0 

rS3sf + 2 (S,, - As13 - 2S,*) = 0 (3.6) 

ns*pr -f- 3s,, -j- s,, - s,, - 3&e = 0 

Relations of the type (3.6) were first obtained in Cl]. However an error was committed 
in numerical computations, which caused the omission of some terms from the final equa- 
tions. 

4, We shall use the first equation of (2.4) to obtain the relations connecting the com- 
ponents of the stress correlation tensor. This yields p] 

Eijh.1 = - V(iUj) (k, 1) 7 Uij (r) E <uic (r + rl) u? PI)) (4.1) 

where uij is the correlation tensor of the displacement vectors. The latter can be writ- 
ten as 

Inserting C4.2) into the first equation of (4.1) we obtain 

r+‘PEijkl = - U2Jijh.l - l/z (U, + rU,‘) Jfjkl + (2Ua - rLJ,‘) Jfjkl + 

+ l/k (6Uz - 3rlJ,’ + rU1’ - r”U,“) J&l _ (8U2 - 5rU,’ + r”U,“) Jijkl (4.3) 

On the other hand, we can express the stress correlation tensor in terms of its matrix 

components using the second equation of (1.3) 

Eijkl 
1 

= El’tJijtcl + l/*E~~JT~~l + (Em - El,) J&I + 
-t- ‘14 PM - Ed J&cl + (En + 4, - 2E,, - E,,) J&l (4.4) 

Here the passage from the tensor to the matrix notation involved numerical coefficients 

[4] which were brought in according to the rule Ed = 2~~ and Ed = 2Elz , and instead 
of (3.2) we now have 

Em = 2 (El, - En) (4.5) 

Comparing (4.3) and (4.4) we obtain the following system of equations: 

rZE,, = - U,, $EGB = - 2 ( U2 + rUl’), P WI8 - Ed = 2&--rUi 

r2 (I& - Ese) = 6U, - 3rU,’ i- rUl’ - r2U/ (4.6) 
r? (E,, + E,, - 2E,, - Ea4) = - SU, i- 5rU,’ f r2Usn 

The required relationships connecting the components of the correlation matrix of the 
strain field are now obtained by eliminating the auxilliary functions Ut and ua 

rE 11’ -I- 2E,, - 3E,, -k El, - E,, = 0, rE12’ + E,, - El3 = 0 (4.7) 

rE13’ - E,, i 3Elo_ - El, - E,, -/- Eaa = 0 

Relations (3.6) and (4.7) determine the connections between the components of the 
binary correlation tensors of the stress and strain fields. Comparing them we find that in 
the first case S,, and Ss3 should be chosen as the two independent components, and 
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in the second case - E,, and E,,. The remaining components of the correlation ten- 
sors can then be expressed in terms of two base components using the differential 

operators. Performing the computations, we find 

8S,, = (R + 2) (fi + 4v337 4&, = CR + 2V3s - 2s~ 
8s12 = 8 (R + i)S,, -R CR + 2) S,, (4.8) 

Es3 = (R + l)Ell + R (R i- QE,z, EM = tR + 2) En + (R - 2)&s 

E,, = (R + 1)&s, R = r-$ (4.9) 

The relations (3.6) and (4.7) obtained, or their equivalents (4.8) and (4.9), express the 
connections between the components of the correlation tensors of the purely birotational 
and purely potential field. If on the other hand the random second rank tensor field is 

mixed, the relations obtained cannot be utilized until it is decomposed with the help of 

(2.1) and (2.2) into its potential and birotational components. 

6. When the stress and strain correlation tensors are computed, usually the angle of 
rotation correlation tensor is computed as well. The latter is particularly useful in esti- 
mating the relative disorientation of the grains during the deformation of microinhomo- 

geneous media. The relationship connecting the components of the latter tensor can 
also be obtained as follows. Defining the rotation vector o as one half of the displace- 
ment rotor [S] we obtain 

Q,j (r) E (q’ (r + rl) Ojo (lrl)), 0 = ‘/a rot U (54 

D = 1/4 Rot U, div Q = 0 (5*2) 

Writing the tensor S& in the form 

Q2,j = Qll6ij + tQ138 - Qdnij (5.3) 

and using the second equation of (5.2),we find. that the components of the angle of rota- 
tion correlation tensor are connected by 

rSZg3f + 2 (St33 - %I) = 0% Sz,, = -+ -$ fr2Q2,3) (5.4) 

Here the components are written in the tensor notation unlike the stress and strain field 

components. Equations (5.4) are formally analogous to the K&m&I relations connect- 
ing the components of the velocity field correlation tensor obtained with the equation 

of continuiv taken into account [S]. 

6, The derivative of the angle of rotation vector taken with respect to the coordinate, 
represents a curvature tensor [5]. Its correlation function can be used to estimate the 

grain bending in a microinhomogeneous medium under a homogeneous macrodeforma- 
tion, The curvature correlation tensor can be obtained from the relations 

rijrl (I) 3 (ra (r + rl) rkl (r,>>l Yij 3 @i, j VW 

r ljkl = - 52$k, $1 EE - Bikjl ( 6.2) 

The tensor 0, Aj l is not symmetric with respect to the interchange of a pair of indices ; 
an interchange of the indices within each pair, however, leaves it unchanged 
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e ikfl = ekifl = eiklj # Olfik 
The tensor eikjl allows the passage to the standard matrix notation. This is however 
not true for the tensor ri]k l (rlsls # lY8131), h ence below we obtain the connections 

between the components of etkjl. 

The passage from eikji to fltlkl can be easily executed using the definition (6.2). 
The tensor Cf+~ll is obtained in its explicit form by inserting the expression (5.3) for 
s&k into (6.2) 

Equation (6.3) shows that although the tensors eikj I and rifkl have no axial symmetry, 
they are.nevertheless characterized by five independent algebraic components. Introduc- 
ing the matrix indices we find seven different components of the tensor &k,t and two 
algebraic relations connecting these components 

(6.5) 

4, = lh (e,, - 6,~ es1 = 4, + 6,, - 4, (6.6) 

The first equation of (6.6) holds for all systems possessing hexagonal syngony , while 
the second equation reflects the condition that 8,s # es,. Eliminating from (6.5) the 
auxilliary functions 9, and 8,, we find three differential equations connecting the com- 
ponents of the tensor fji kf I 

rell’ = e,, + e,, + 26,,, fi12’ = o,, + e19, ~9,~~ = v,(e,, - e,,) (6.7) 

Next, choosing 8,, and 8,s as the ~de~~dent functions, we express the remaining com- 

ponents of eikJl in the terms of these functions 

8,s = (R - i)e,,, es, = lisle,, = 2e,, (6.8) 

e,, = (R - 1) (Re,, - e,,), 284, = (R - 1) e,, - 0,, 

Using (6.2) we can easily write (6.7) and (6.8) directly for the components of the cur- 
vature correlation tensor rifkl. We must however in this case employ the tensor indices, 

since I+ijkl # Illilk. 
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Conditions are presented for which the lower part of the spectrum of the mem- 

brane problem consists of an infinite series ofeigenvalues converging to the lower 
bound of the continuous spectrum. It is shown that boundary layer theory [l] is 
applicable to this portion of the spectrum and the first approximation is obtained 
for the eigenvalues. 

The equations of natural axisymmetric vibrations of a thin elastic shell of revolution 

are @, 31: 

Here the parameter s is the arclength of a meridian of the middle surface measured 

from some fixed point, B (a) is the distance between a variable point on the meridian 

and the axis of revolution. The projections of displacement of the middle surface point 
in the directions of the meridian and of the normal to the surface and denoted by u (s) 

and w (a). For the principal radii of curvature we have 

R,-’ = - r (1 - (B’)“)-%, Rs-1 = (1 - (B’)s)‘/&l 

The spectral parameter a is proportional to the square of the vibrations frequency, 
the small parameter h is the relative shell thickness, and o is Poisson’s ratio. The coef- 
ficients of (0.1) are assumed sufficiently smooth. 

Let us bound the shell by two parallels s = S, and s = s,, and let us take the follow- 
ing boundary conditions 

L! (sr) = u (ss) = w (sr) = w (ss) = w’ (sr) = w’ (s*) = 0 (0.2) 


